The Sulfolobus initiator element is an important contributor to promoter strength.

نویسندگان

  • Xiang Ao
  • Yingjun Li
  • Fan Wang
  • Mingxia Feng
  • Yanxu Lin
  • Shumiao Zhao
  • Yunxiang Liang
  • Nan Peng
چکیده

Basal elements in archaeal promoters, except for putative initiator elements encompassing transcription start sites, are well characterized. Here, we employed the Sulfolobus araS promoter as a model to study the function of the initiator element (Inr) in archaea. We have provided evidence for the presence of a third core promoter element, the Sulfolobus Inr, whose action depends on a TATA box and the TFB recognition element (BRE). Substitution mutations in the araS Inr did not alter the location of the transcription start site. Using systematic mutagenesis, the most functional araS Inr was defined as +1 GAGAMK +6 (where M is A/C and K is G/T). Furthermore, WebLogo analysis of a subset of promoters with coding sequences for 5' untranslated regions (UTRs) larger than 4 nucleotides (nt) in Sulfolobus solfataricus P2 identified an Inr consensus that exactly matches the functional araS Inr sequence. Moreover, mutagenesis of 3 randomly selected promoters confirmed the Inr sequences to be important for basal promoter strength in the subgroup. Importantly, the result of the araS Inr being added to the Inr-less promoters indicates that the araS Inr, the core promoter element, is able to enhance the strength of Inr-less promoters. We infer that transcription factor B (TFB) and subunits of RNA polymerase bind the Inr to enhance promoter strength. Taken together, our data suggest that the presence or absence of an Inr on basal promoters is important for global gene regulation in Sulfolobus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spacing requirements for simultaneous recognition of the adenovirus major late promoter TATAAAAG box and initiator element.

The distance between the TATAAAAG box and initiator element of the strong adenovirus major late promoter was systematically altered to determine the optimal spacing for simultaneous recognition of both elements. We find that the TATAAAAG element is strongly dominant over the initiator for specification of the start site. The wild type spacing of 23 base pairs between TATAAAAG and +1A is optimal...

متن کامل

Mutational analysis of an archaebacterial promoter: essential role of a TATA box for transcription efficiency and start-site selection in vitro.

By using a recently developed in vitro transcription assay, the 16S/23S rRNA-encoding DNA promoter from the archaebacterium Sulfolobus sp. B12 was dissected by deletion and linker substitution mutagenesis. The analysis of 5' and 3' deletion mutants defined a core promoter region between positions -38 and -2 containing all information for efficient and specific transcription. Further characteriz...

متن کامل

Archaeal promoter architecture and mechanism of gene activation.

Sulfolobus solfataricus and Sulfolobus islandicus contain several genes exhibiting D-arabinose-inducible expression and these systems are ideal for studying mechanisms of archaeal gene expression. At sequence level, only two highly conserved cis elements are present on the promoters: a regulatory element named ara box directing arabinose-inducible expression and the basal promoter element TATA,...

متن کامل

Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus.

Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble alpha-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an alpha-gl...

متن کامل

Molecular Characterization of the a-Glucosidase Gene (malA) from the Hyperthermophilic Archaeon Sulfolobus solfataricus

Acidic hot springs are colonized by a diversity of hyperthermophilic organisms requiring extremes of temperature and pH for growth. To clarify how carbohydrates are consumed in such locations, the structural gene (malA) encoding the major soluble a-glucosidase (maltase) and flanking sequences from Sulfolobus solfataricus were cloned and characterized. This is the first report of an a-glucosidas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 22  شماره 

صفحات  -

تاریخ انتشار 2013